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Orientation of (1×1)-surface free energies of crystals
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Abstract

The free energy of a (1×1)-surface, with no relaxation and no adsorption, is calculated using a bond-breaking mode in which
the potential energy of the crystal is treated as the sum of the energy of the bonds connecting pair-wise atoms. Based on a purely
geometrical model, the number of broken bonds or dangling bonds per atom is calculated on the surface of the crystal when an
atomically flat plane h(hkl ) is created. The results provide a general expression of the surface free energy in terms of Miller indices
hkl. The anisotropy of the surface free energy is completely described in the expression. Considering nearest-neighboring bonding
only, the orientation dependence of the surface free energy is discussed for simple cubic (sc) and cubic tetrahedral (cth) crystals,
respectively. Wulff plots and the equilibrium forms for the sc and the cth crystals are obtained on the basis of their expressions of
the surface free energy, implying the cube and the octahedron are the equilibrium forms for the sc and the cth crystals, respectively.
Furthermore a predicted anisotropy of fcc metals is discussed. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction energy [6–8]. A periodic bond chain model has
been proposed by Wolff et al. [9] who expect that
the specific surface free energy may be derived inInterest in the surface configuration and surface
terms of the crystallographic indices hkl. A vectorenergy of crystals is increasing as a consequence
function model has been proposed by Hoffman et.of modern experiments in fields such as the equili-
al. [10] to describe the orientation of surfacebration of grain boundaries, the oriented growth
energy. Mackenzie et al. [11] have presented aof crystals, sintering, adsorption and surface catal-
theoretical model to determine the distribution ofysis [1]. It can be expected that a perspective on
dangling bonds on the atomically flat surfaces.problems in various fields will be gained by investi-
The aim of the work described in this paper hasgating the surface energies of the various possible
been to determine, on a purely geometrical basis,configurations of the surfaces of a crystal.
the surface free energy as a function of orientationIt is well known that the surface free energy of
by dealing with a bond-breaking mode.a crystal is generally dependent on the orientation

A surface which gives a precise separation ofof the surface [1–5]. Some previous work has been
the system into two parts, with homogeneousdone to calculate and measure the surface free
portions of the two phases located on its opposite
sides, was called by Gibbs a dividing surface [12].
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may be defined as the reversible work Wrev required represented by a line with atoms at each end, it
must be broken when an atomically flat surfaceto create a surface of area 2A(u) with an orienta-

tion given by the unit vector u normal to the is formed.
surface [9,13], i.e.

2.1. Interaction between u-bonds and the dividing
c(u)=Wrev/2A(u). (1) plane h(hkl)

The surface tension is usually defined in terms of
Any specific bond associated with a given atomspecific surface free energy [2,14]. The reversibility

can be defined as a vector u, which contains theimplies that the atomic configurations everywhere
components u, v and w in the primitive cell, goingin the system and particularly in the surface region
from this atom to a neighboring atom. Such aare always those characteristic of equilibrium.
bond is called the u-bond [11]. Any u-bond withIn the present paper, the surface is dealt with
components 
uvw� corresponds to its own coordi-in a bond-breaking mode without regard to the
nation, n

i
. For instance, when u≠v=w=0, n

i
=6,surface reconstruction. However, we still use the

i.e. [u00], [−u00], [0u0], [0−u0], [00u] andphrase ‘‘surface free energy’’ in this case. Further-
[00−u], while when u≠v≠w≠0, n

i
=48, and somore, a restriction is imposed in which the poten-

on. The u-bonds with the same components, u, vtial energy of the crystal is represented as the sum
and w, are called a u-bond set or u

i
-bonds. Table 1of pair-wise interatomic interactions. The crystal

lists five possible components of the u-bonds andis taken to be semi-infinite and defect-free, and
their coordination. It is evident that a crystalthermal vibrations and any contacting phase are
lattice can be described completely by the u-bonds.neglected. The specific surface free energy, c

hkl
, is

For example, the first three components of the u-then simply equal to half the energy per unit area
bonds in Table 1 correspond to sc, fcc, bcc andof surface associated with breaking the bonds
cth (cubic tetrahedral or diamond) lattices withwhich would connect the crystal occupying the
respect to first neighbor u-bonds, respectively.other half space [2,9,13]:
Table 2 shows the first, second and third u-bonds
corresponding to sc, bcc, fcc and cth, respectively.

c
hkl
=

1

2
∑ n(u)E0(u) (2)

Table 1where E0(u) is the potential energy of interaction
The coordination with respect to components of u

i
-bonds (u, vof a pair of atoms separated by a vector u and

and w are integral )
n(u) is the number per unit area of such bonds

u
i
-bonds (
uvw�) Coordination Lattices withbroken when the crystal is separated. It is obvious

respect to nearestthat n(u) is dependent on orientation and that
neighboring bondsE0(u) is dependent on the nature of crystal.

1. u≠v=w=0 6 sc a
2. u=v=w≠0 8 bcc and cth b
3. u=v≠w=0 12 fcc c
4. u≠v=w≠0 242. Theoretical aspects
5. u≠v≠w=0 24
6. u≠v≠w≠0 48When an infinite ideal crystal is divided into two

parts by a plane (hkl ), the two new surfaces may a If u=a, the u
i
-bonds become 
100�a, which are nearest neigh-

bor bonds in the sc crystal with lattice constant a.be described as atomically flat surfaces indicated
b If u=a/2, the u

i
-bonds become 
111�a/2, which are nearestas (hkl ) and (−h−k−l ). Clearly, a semi-infinite

neighbor bonds in the bcc crystal with lattice constant of a; ifcrystal with an atomically flat surface is one in
u=a/4, the u

i
-bonds become 
111�a/4, which are nearest neigh-

which all possible atomic positions are occupied bor bonds in the cth crystal with lattice constant of a.
on one side of the dividing plane but in which c If u=a/2, the u

i
-bonds become 
110�a/2, which are nearest

neighbor bonds in the fcc crystal with lattice constant of a.none are occupied on the other side. If a bond is
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Table 2
The first, second and third nearest neighbor bonds of various cubic crystals

Crystal Components (
uvw�×bond number)

1st neighbor bonds 2nd neighbor bonds 3rd neighbor bonds

sc 
100�×6 
110�×12 
111�×8
fcc 
110�/2×12 
100�×6 
211�/2×24
bcc 
111�/2×8 
100�×6 
110�×12
cth 
111�/4×4 
110�/2×12 
100�×6

Furthermore, ∑u
i
=0 (i=1, 2, …, n

i
), for any u- being bonds unbroken or bonds broken with zero

density (Fig. 1).bond set. It is obvious that the u-bonds are essen-
tially vectorial representation for Bravais lattice.

On the other hand, an atomically flat surface is 2.2. The number of u-bonds broken when a surface
specified by the vector h which contains compo- h(hkl) is formed
nents of h, k and l in the reciprocal cell. The
components are defined as Miller indices of the Since u is a lattice vector and therefore exactly
surface. In case of cubic symmetry, the vector spans an integral number of lattice planes with
h(hkl ) is orthogonal to the dividing plane (hkl ) in normal h, it is found that, when plane h(hkl )
the primitive lattice. Fig. 1 shows schematically divides the crystal, i.e. when the surface hkl is
the geometrical relation between h and u when formed, the number of broken u

i
-bonds or dan-

plane h(hkl ) divides the crystal in which the atoms gling bonds per atom can be given by
are connected with some kind of u-bonds. If h is

N(u
i
)=h ·∑ u

i
/|h|d

hkl
, h · u

i
>0, (3)assumed to have direction perpendicular to the

surface and towards the outside of the crystal, the where d
hkl

denotes the spacing between adjacent
u-bond can be broken only if h · u>0. If h · u<0 planes (hkl ). Fig. 2 gives three cases in which
the u-bond is directed backwards into the crystal different u-bonds are broken. When the u-bond
and remain unbroken. If h · u=0, the u-bonds lie spans two planes, i.e. one spacing unit between
in the surface h(hkl ) and can be understood as the planes (Fig. 2a), it is easy to show that Eq. (3)

gives exactly the number of broken bonds. In
general, if the u-bond spans more than two planes
(Figs. 2b and c), the number of unit spacings of
(hkl ) through which u passes is equal to the
number of u-bonds which are cut by one of those
planes. If V denotes the volume of crystal per
atom, then V/d

hkl
is obviously the area of the

surface (hkl ) per atom. Thus, when the crystal is
divided along plane (hkl ), i.e. when the surface
(hkl ) is formed, the areal density of the dangling
bonds, n(u), can be determined by N(u

i
)/V/d

hkl
,

i.e.

n(u
i
)=h ·∑ u

i
/V|h| when h · u

i
>0. (4)Fig. 1. Geometrical coordination of the dividing plane h(hkl )

and the u-bonds. h · u
1
>0 implies that the u

1
-bond is broken;

It is evident that V|h| is the area of the surfaceh · u
3
<0 implies that the u

3
-bond is not broken and h · u

2
=0

that the u
2
-bond is unbroken or broken with zero density. (hkl ) per atom, s

hkl
, where |h|=(h2+k2+l2)1/2/a.
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it can be found that ∑u
j
=−∑u

k
, since ∑u

i
=0

(i=1, 2, …, n_{i}). It follows that

h ·∑ u
j
=−h ·∑ u

k
. (7)

Eq. (7) is independent of h and can be rewritten
as ∑h · u

j
=−∑h · u

k
, implying that any h(hkl ) can

separate the u
i
-bonds into two equivalent parts in

which the u-bonds in the one part are broken and
the u-bonds in the other part remain unbroken. In
fact, in most of case these two equivalent parts
satisfy n

j
=n

k
=n

i
/2, i.e. the plane divides the

n
i

u
i
-bonds into two halves. The number of

u
i
-bonds broken per atom, when the crystal is cut

by the plane h(hkl ), is then given by

N(u)=h ·∑ u
j

( j=1, 2, …, n
i
/2). (8)

In the case of n
j
≠n

k
≠n

i
/2, however, to calculate

the number of u-bonds broken per atom according
to Eq. (8), a special plane h0 (h0 and h belong to
a same family of planes) can be chosen which
divides the n

i
u
i
-bonds into two halves, i.e.

n
j
=n

k
=n

i
/2.

Fig. 2. Division of a crystal into two parts in which different
bonds are broken. The number of spacings of (hkl ) through 2.3. The surface free energies of the crystals
which u

i
passes is equal to the number of u

i
-bonds which are

cut by one of those planes. (a) u
1

and u
2

span respectively one The (1×1) surface free energy, c
hkl

, is definedunit spacing of (hkl ) and the plane cuts two u
i
-bonds; (b) u

1 as being half the energy per unit area required tospanning two unit spacings of (hkl ) and the plane cuts two u-
separate the crystal along a plane h(hkl ) [2,9,13].bonds; (c) u

1
spans three unit spacings of (hkl ) and the plane

cuts three u-bonds. For simplicity, as mentioned above, a restriction
is imposed in which the pair-wise interatomic
interaction is represented as the energy of a bond
connecting the pair-wise atoms. This energy is

In general, this area is given by obviously a bond energy. Only half the bond
energy, E, is therefore considered to contribute thes

hkl
=V|h|=a2(h2+k2+l2)1/2/n (5)

broken u-bond to the specific surface free energy
where a and n are, respectively, the lattice constant
and the number of atoms per unit cell. It follows c

hkl
=n(u) (E/2)=

1

V|h|
∑
i

h · u
j
(E/2) (9)

that the number of the u
i
-bonds broken per atom

is given by
since both the crystal surfaces, (hkl ) and
(−h−k−l ), created during the dividing processN(u

i
)=n(u

i
)s
hkl
=h ·∑ u

i
, h · u

i
>0. (6)

are identical.
In real crystals, any atom is considered to beOne can find easily that, from Eq. (6), the number

is dependent on and only on both the dividing connected to other atoms by various u-bonds. For
example, the first, second and third neighboring u-plane and the atomic structure of the crystal.

If in a u-bond set, n
i

u
i
-bonds are separated into bonds of an sc crystal are six 
100�, twelve 
110�

and eight 
111� bonds. In other cubic crystals,two arbitrary groups n
j

and n
k
, where n

j
+n

k
=n

i
,
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such as fcc, bcc and cth, the first three neighboring
bonds are shown in Table 2. If the u-bond connect-
ing with the rth neighboring atom has an energy
E
r
, the specific surface free energy of a crystal,

when an atomically flat surface h is created, is
equal to

c
hkl
=

1

V|h|
∑
r
∑
j

h · u
rj

(E
r
/2). (10)

It is evident that the term h ·∑u
rj

/|h| in Eq. (10)
is a function of orientation, while the term E

r
/V

depends on the nature of the material. A physical
interpretation of Eq. (10) is therefore that the
surface free energy is dependent on both the orien-
tation of the cutting plane h(hkl ) which defines
the surface and the nature of the bond in the
crystal, i.e. the bond energy and its geometry.

3. Method of calculation

In general, Eq. (10) can be used to compute the
specific surface free energy of any crystal whose
structure can be described as a cubic lattice. The
procedure for calculating the surface free energy
is the following:
(1) Determine the number of u

i
-bonds broken per

atom using Eq. (8).
(2) Determine the contribution of the broken

u
i
-bonds to the surface free energy using

Eq. (9).
(3) Find the u-bond sets in the crystal and then

determine the surface free energy for the crys-
tal using Eq. (10) in combination with Eq. (5).

3.1. The number of u-bonds broken per atom
Fig. 3. The regions in which the planes (h≥k≥l≥0) are divided
into part I and part II when 
111� bond set is considered.The creation of a surface h(hkl ) is equivalent to

a process in which the crystal is cut by the h(hkl )
plane. It is evident from Eq. (8) that the number 3.1.1. Case I: h cuts the 
100�-bonds

It is evident that u=
100� represents the firstof u-bonds broken depends on both the cut plane
and the u-bonds. In present paper three different neighbor bonds of the sc lattice with respect to the

nearest neighboring bonds as shown in Fig. 3a.possibilities are considered.
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For this kind of bond, the coordination is six, number is in general given by the expression

N(u)=2l+g (15)u
1
=[100], u

4
=[−100],

in which l and g are, respectively, the largest andu
2
=[010], u

5
=[0−10], (11)

middle Miller indices (hkl ). By symmetry, it is easy
u
3
=[001], u

6
=[00−1]. to show that, in general, N(u)=2|l|+|g|.

Any plane in the first quadrant separates this u-
3.1.3. Case III: h cuts the 
111�-bondsbond set into two halves, u

j
(u
1
, u

2
, u

3
) and

This kind of u
i
-bond corresponds to two crystalu

k
(u
4
, u

5
, u

6
), giving ∑h · u

j
>0. Therefore,

lattices, bcc and cth, with respect to different∑u
j
=u

1
+u

2
+u

3
=[111]. The number of the u-

coordinations. When the coordination is eight asbonds broken per atom according to Eq. (8) is
in the following:thus given by
u
1
=[111]/2, u

5
=[−1−1−1]/2,N(u)=h ·∑ u

j
=h+k+l. (12)

u
2
=[1−11]/2, u

6
=[−11−1]/2, (16)

In the case of the planes in other quadrants,
u
3
=[11−1]/2, u

7
=[−1−11]/2,considerations of cubic symmetry show that the

number of the u-bonds broken per atom is given u
4
=[1−1−1]/2, u

8
=[−111]/2.

by N(u)=|h|+|k|+|l|.
The u

i
-bonds are evidently the nearest neighbor

bonds of the bcc crystal as shown is Fig. 3c. In3.1.2. Case II: h cuts the 
110�-bonds
this case, the h(hkl ) plane in region I in Fig. 4In this case, the u-bond set 
110� corresponds
separates the u

i
-bonds into two halves,to fcc lattice with respect to nearest neighbor

u
j
(u
1
, u

2
, u

3
, u

4
) and u

k
=−u

j
, giving ∑h · u

j
>0bonds as shown in Fig. 3b. Its coordination is

and ∑u
j
=[200]. The planes in region II, however,twelve:

separate the u
i
-bonds into two different halves as

u
j
(u
1
, u

2
, u

3
, u

8
) and u

k
=−u

j
, so that ∑u

j
=u

1
=[110]/2, u

7
=[−1−10]/2,

[111]. Thus, the numbers of these u
i
-bonds broken

u
2
=[1−10]/2, u

8
=[−110]/2, per atom are determined by

u
3
=[101]/2, u

9
=[−10−1]/2, (13) N(u)=2h (in region I), (17a)

u
4
=[10−1]/2, u

10
=[−101]/2, N(u)=h+k+l (in region II ), (17b)

u
5
=[011]/2, u

11
=[0−1−1]/2, where h≥k≥l≥0. Similarly, taking symmetry into

account, Eqs. (17a) and (17b) can be rewritten sou
6
=[01−1]/2, u

12
=[0−11]/2.

Any plane h(h≥k≥l≥0) can separate this set of
u
i
-bonds into two halves, u

j
(u
1
, u

2
, u

3
, u

4
, u

5
, u

6
)

and u
k
=−u

j
, where ∑h · u

j
>0. It can then easily

be shown hat ∑u
j
=[210]. Using Eq. (8), the

number of u-bonds broken per atom in this case
is given by

N(u)=2h+k. (14)

It is evident that Eq. (14) is valid only when
h≥k≥l≥0. It can be shown that ∑u

j
=[120] when

k≥h≥l≥0, while ∑u
j
=[021] when k≥l≥h≥0

and ∑u
j
=[012] when l≥k≥h≥0, etc. Thus, con-

Fig. 4. Nearest neighbor bond sets in various lattices.sidering the planes in the first quadrant, the
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that N(u)=2|l| and (|h|+|k|+|l|), in regions I and For the sake of simplicity, the calculation is taken
for the surfaces (hkl ) in the first quadrant i.e. h, kII, respectively.
and l are substituted for their absolute valuesOn other hand, the coordination of this
respectively and so on.u

i
-bond set can be four as in the following:

u
1
=[111]/4, u

3
=[−11−1]/4, (18)

4. Results for some crystals
u
2
=[1−1−1]/4, u

4
=[−1−11]/4.

In the present calculation of surface free energieswhich corresponds to the cth lattice with respect
for real crystals, only the first, second and thirdto nearest neighboring bonds. Fig. 3d depicts the
neighboring atoms are in general considered andfour-bond set schematically. This bond set can be
more distant neighbors are neglected. For instance,divided into two parts as u

j
(u1, u2) and u

k
(u3, u4) for the sc crystal the first, second and third neigh-by any plane h(h≥k≥l ) in region I as shown in

boring u-bonds are six 
100�-bonds, twelve 
110�-Fig. 4. Other planes, as in region II, however,
and eight 
111�-bonds, respectively, as shown inseparate these four bonds into two parts which
Table 2. According to Eq. (5) the area of thecontain respectively one bond and three bonds,
surface (hkl ) per atom, V|h|, is a2(h2+k2+l2)1/2.i.e. u

j
=u

1
and u

k
(u2, u3, u4), in which u

j
and u

k The surface free energy of the sc crystal is thereforemake equivalent contribution to the number of
given by Eq. (10):broken bonds. Only planes in region I are therefore

considered to calculate the number of the broken
c
hkl
=

(h+k+l )E
1
/2+(2l+g)E

2
+2lE

3
a2(h2+k2+l2)1/2

(20a)bonds using Eq. (8). Thus, ∑u
j
=[1/2 0 0], and the

number of this kind of u-bond broken by a plane
(in region I ),h is then

N(u)=|l|/2 (19)
c
hkl
=

(h+k+l ) (E
1
/2+E

3
)+(2l+g)E

2
a2(h2+k2+l2)1/2

(20b)
in which the symmetry is taken into account.

(in region II ).
3.2. Contribution of the broken u

i
-bonds to the

Table 4 presents the calculated surface free energiessurface free energies.
of sc, fcc, bcc and cth crystals with respect to first
three order of neighboring u-bonds.Eq. (9), which is a general expression represent-

ing the surface free energy due to the u
i
-bonds

broken, enables the contribution of the broken 5. Discussion
u
i
-bonds to the surface free energy to be calculated.

Table 3 shows the results of the contributions when In the theory here presented, an important
assumption is that the potential energy of thethe 
100�-, 
110�- and 
111�-bonds are broken.

Table 3
The surface free energy due to the u

i
-bonds broken by plane h(hkl )a

u
i
-bonds 
100� 
110� 
111�

Coordination is eight Coordination is four

In region I In region II

Surface free energy (c
hkl

) h+k+l

2V|h|
E
100�

2l+g

2V|h|
E
110�

l

2V|h|
E
111�

h+k+l

2V|h|
E
111�

l

4V|h|
E
111�

aE
uvw� denotes the bond energy for u
uvw�-bonds; l and g denote the first and second largest Miller indices h, k and l.
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Table 4
The surface free energies of various crystals with respect to the first three neighboring u-bonds

Crystals V|h|
Surface free energies A 1

V|h|
∑
r
∑
j

h · u
rj

(E
r
/2)B

In region I In region II

sc a2(h2+k2+l2)1/2 (h+k+l )E
1
/2+(2l+g)E

2
+2lE

3
a2(h2+k2+l2)1/2

(h+k+l ) (E
1
/2+E

3
)+(2l+g)E

2
a2(h2+k2+l2)1/2

fcc a a2(h2+k2+l2)1/2

4

2[(2l+g)E
1
+(h+k+l )E

2
+4lE

5
]

a2(h2+k2+l2)1/2

2[(2l+g)E
1
+(h+k+l )(E

2
+2E

5
)]

a2(h2+k2+l2)1/2

bcc a2(h2+k2+l2)1/2

2

2lE
1
+(h+k+l )E

2
+2(2l+g)E

3
a2(h2+k2+l2)1/2

(h+k+l ) (E
1
+E

2
)+2(2l+g)E

3
a2(h2+k2+l2)1/2

cth a2(h2+k2+l2)1/2

8

4[(l/2)E
1
+(2l+g)E

2
+2(h+k+l )E

3
]

a2(h2+k2+l2)1/2

a For fcc, the first, second and fifth neighboring u-bonds are considered.

crystal can be represented as a sum of pair-wise the representation of the binding in terms of a
pair-wise interaction is somewhat artificial [12].interatomic interactions, i.e. bond energies. With

this restriction, the surface free energy given by It is evident that the cth lattice corresponds to
sp3 bonded materials such as Si and diamond. ForEq. (10) is justifiable for covalently bonded and

simple ionic materials since the bond in these these highly covalent bonded materials, it is rea-
sonable to suppose that E

1
&E

2
and E

1
&E

3
andmaterials are strongly oriented. Owing to delocal-

ization of the valence electrons in metals, however, therefore to neglect E2 and E3. This neglect implies

Fig. 5. A schematic drawing of the unit areas containing one bond, Ahkl (shaded), in a cubic tetrahedral crystal. (a)
A
111

=ab=E3[(4/3)d2
0
], (b) A

110
=bc/2=E2[(4/3)d2

0
] and (c) A

100
=b2/2=(4/3)d2

0
, where d0 denotes the bond length. The large

open, middle shaded and small filled circules denote atoms on the first, second and third layers, respectively.
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Fig. 6. Wulff plots and equilibrium form of a diamond crystal based on Eq. (22) or Eq. (23). (a) a two-dimensional Wulff plot for a
family of planes parallel to [1−10]; (b) a two-dimensional Wulff plot for a family of planes parallel to [100]; (c) a three-dimensional
Wulff plot in the first quadrant.

that the effect of sub-nearest neighbor atoms on c
hkl
=(E/2)/A

hkl
then gives immediately that

mechanical stability of lattice is consequently
ignored. The surface free energy of the cth crystals, c

hkl
=

l

(h2+k2+l2)1/2

3E

8d2
0

. (22)
shown in Table 4, is therefore simply given by

This equation is exactly the same as Eq. (21) since
c
hkl
=

l

(h2+k2+l2)1/2

2E

a2
(21) d

0
=(E3/4)a in a cth cell.
To illustrate Eq. (22), typical cth crystals Si

where E=E1 is the bond energy. and diamond are chosen. For silicon, the
The validity of Eq. (21) can be shown simply as bond energy E=42.2 kcal mol−1 and the bond

follows. If a unit area, A
hkl

, is defined as an area length d0=2.34 Å [15,16] and Eq. (22) yields
containing only one dangling bond, it can be c111=1160 erg cm−2, which is almost the same as
shown that for the cth crystal A

111
=[(4/3)d2

0
]E3, the value of 1240 erg cm−2 measured by Gilman

using a cleavage method [7]. For diamond,A
110

=[(4/3)d2
0
]E2 and A

100
=(4/3)d2

0
(where d0

denotes the bond length) as shown in Fig. 5. In E=83.1 kcal mol−1 and d0=1.54 Å [15,16 ], and
the surface free energy calculated according togeneral, it can be shown that A

hkl
=4(h2+k2

+l2)1/2d
0
/3l, where l is the largest of the Miller Eq. (22) is c111=5277 erg cm−2, which is almost

exactly the same as the value calculated by Harkinsindices h, k and l, by derivation using a simple
inductive method. Consideration of the fact that [6 ] and Ramaseshan [8]. Furthermore Eq. (22)
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Fig. 7. Wulff plots and equilibrium form of the sc crystal based on Eqs. (24a) and (24b). (a) a two-dimensional Wulff plot for a
family of planes parallel to [1−10]; (b) a two-dimensional Wulff plot for a family of planes parallel to [100]; (c) a three-dimensional
Wulff plot in the first quadrant.

as NaCl and PbS etc. This kind of equilibriumshows that c
100

:c
110

:c
111

=1:1/E2:1/E3. The Wulff
form is proved by Wells [17].plots of the cth crystal from Eq. (22), shown

To calculate the surface free energy for metalsschematically in Fig. 6, imply that the equilibrium
using this mode, more sub-bond energies (2nd-form of diamond is an octahedron [9].
nearest bond energy E2, 3rd-nearest bond energyOn other hand, ionic materials such as the alkali
E3, etc.) should be considered. For example, thehalides with NaCl structure may be constructed
anisotropy of the surface free energy of fcc metalby arranging Na+ and Cl− ions alternatively at
is given from Eq. (10):the points of a simple cubic lattice. It is therefore

reasonable that only the energy of the first neigh-
boring u-bonds, E, is considered in the calculation c

hkl
c
111

=
E3[2h+k+(h+k+l )b

1
+4hb

2
]

3(1+b
1
+2b

2
) (h2+k2+l2)1/2

(24a)
[13]. The surface free energy of the simple cubic
crystals represented in Eqs. (20a) and (20b) can (in region I ),
therefore be simplified to

c
hkl

c
111

=
E3[2h+k+(h+k+l ) (b

1
+2b

2
)]

3(1+b
1
+2b

2
) (h2+k2+l2)1/2

(24b)
c
hkl
=

h+k+l

(h2+k2+l2)1/2

E

2a2
. (23)

(in region II ),
The Wulff plots for this type of crystal obtained
from Eq. (23), as shown in Fig. 7, imply that the where b

1
=E

2
/E

1
and b

2
=E

5
/E

1
. It is reasonable

to assure that 1>b1>b2. Fig. 8 gives a comparisoncube is the equilibrium form of the such crystals
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als, particularly oriented bond materials such as
cth and sc crystals. The anisotropy of the surface
free energies is exactly described in terms of the
Miller indices hkl. Eqs. (21) and (23) give, respec-
tively, the specific surface free energies of the cth
and sc crystals, which have strongly oriented
bonds. The ideal surface free energy, with no
relaxation and no adsorption, can be calculated
from the bond energy and bond lengths using
these equations. The Wulff plots obtained from
the general representation indicate that the equilib-
rium forms of the diamond and sc crystals are
the octahedron and the cube, respectively.Fig. 8. Comparison of measured anisotropy of the surface free
Furthermore, the predicted anisotropy of fccenergy with predicted one for fcc metals. The interaction

between two atoms is assured to be proportional to r2, where metals is in agreement with experiment [18].
r is distance between the atoms. When b

1
=b

2
=0, i.e. only the

nearest neighbor atoms are considered, the anisotropy of the
surface free energy is shown in curve I. When the first and
second neighbor atoms are taken into account, i.e.
b
1
=1/4, b

2
=0, the calculated anisotropy is shown as curve II.

When the first, second and fifth neighbor atoms are taken into Acknowledgements
account, i.e. b
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2
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