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The surface free energy (SFE) of (1x1)-surfaces of crystals, without reconstruction
cnd adsorption, is calculated using a bond-broken mode. In the mode, the potential
energy of the crystals is treated as a sum of the energies of the bonds connecting
pair-wise atoms (U-bonds). The SFE is calculated based on the bond energy and the
area density of dangling bonds which depends on the structure of the surface. The
results provide a general expression for the SFE in terms of the bond energy (E)
and the bond length (do) of the crystal and Miller indices hkli. The anisotropy of
the SFE is therefore completely determined with the ezpression. As the eramples,
considering the nearest-neighboring bonding, the SFEs of sc, fec, bec and cth (cubic
tetrahedral) crystals are discussed, respectively. Wulff plots of bce and fcc crystals
are then obtained. The equilibrium forms (EFs) of these crystals are consequently
got from their Wulff plots, respectively. It is found that the EFs of bcc and fcc are
respectively the rhombic dodecahedron and the truncated-octahedron that are their first
Brillouin zones, respectively.
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1. Introduction

Interest in the surface free energy (SFE) of crystals is increasing as a consequence of
modern experiments in the fields such as crystal growth, crystalline morphology, equilibra-
tion of grain boundaries, sintering, adsorption and surface catalysis and etcl!=2

It is well known that the SFE of a crystal is generally dependent on the orientation of
the surfacel®. Some previous works have been done to calculate and measure the SFE4~3],
But, a generally theoretical method is still needed to describe and compute the SFE. The
starting point in present work is the definition of the SFE of a crystal face. By dividing in
vacuum a crystal along a plane (hkl), there is to spend the work Wy (rev.) in order to
separate to infinity both parts of the crystal during an isothermal (AT=0) and reversible
process, creating a surface area 2Apy;. The per unit area SFE, gy, is that

Yot = Whri(rev.) /2 Apgi. (1)
It is obvious that the work done for dividing crystal is that needed for breaking the bonds

of the crystal. In the present paper, it is neglected that surface reconstruction, thermal
vibration of atoms, any foreign atoms at surface. The SFE is then simply equal to that

et = »_n(@)E(@)/2, (2)
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where E (i) is the potential energy of interaction of a pair of atoms separated by a vector
i, i.e. bond energy, and n(#) is the number per unit area of such bonds broken when the
crystal is separated, i.e. the area density of dangling bonds.

2. Theoretical Aspects

When an infinite crystal is divided into two parts by a olane }:(hkl’.), the two new
surfaces is described as atomically flat surfaces indicated as (hkl) and (hkl). Clearly, a
semi-infinite crystal with an atomically flat swrface is one in which all possible atomic
positions are occupied on one side of tie dividing plaue but in which none is occupied on
the other side. If a bond i< represented by a Line with atoms at each end, it must be broken
when the surface is tormed.

2.1 Interaction between @-bonds and dividing plan h(hkl)

Any bord associated with a given atom is defined as a vector #, which contains the
components u, v and w in the primitive space, going from this atom to neighboring atoms.
Such a bond is called @-bond in this paper. Any @-bond corresponds to its own coordi-
nation, n;. For instance, when v # v = w = 0, n;=6; while when v = v # w = 0, n;
= 12, and so on. The #-bonds with same components (uvw) are called @;-bond set or
#;-bonds (¢ = 1, 2, ---, n;). Table 1 lists six possible components of the #-bonds and their
coordinations. It is evident that the crystalline structure of crystal can be described by
the @;-bonds. For example, the first three i;-bonds in the table 1 correspond to sc, fec,
bee and cth (cubic tetrahedral or diamond) structures with respect to the first neighboring
u;-bonds in crystal, respectively. It is obvious that the nearest i;-bond set is essentially a
vectorial representation for Bravais lattices.

Table 1 The #;-bonds and their coordination

t({uvw)-bond Coordination Lattice with respect to the

nearest neighboring bonds

lL.uZv=w=0 6 sc
2Q.u=v=w#0 8 or4 bce or cth
B u=v#w=0 12 fcc

4. uFv=w#0 24

5 uv#w=0 24

6.uFvFw#0 48

On the other hand, an atomically flat surface is specified by a vector k which contains
the components of h, k and [ in the reciprocal lattice. The components are defined as Miller
indices of the surface. In the case of cubic symmetry, the his orthogonal to the surface. It
is obvious that a process of creating a new surface ﬁ(hkl) is equivalent to that of cutting
crystal by the plane k. F ig.1 shows schematically the geometrical relation between h and
@ while surface & is formed. If & is assumed to have a direction towards the outside of the
crystal, the #-bonds is broken when h-i; > 0, the i;-bonds is unbroken when k- i; < 0.
In the case when A - @; = 0, the i-bonds lie in the surface and can be understood as being
bonds unbroken or bonds broken with zero density.
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2.2 The number o]: the i;-bonds broken
while a surface h(hkl) is formed

Since # is a lattice vector and therefore e
exactly spans an integral number of planes T .
with normal E, it is found that, when plane h-u, / y
i-i(hkl) cut the crystal, i.e. when the surface L U A e
h(hkl) is formed, the number of the @;-bonds L soia 0000
broken (or dangling bonds) per surface atom \u:

is given by that

N(ﬂ'i) _ }'L' ) Zﬁi/“_’:ldhkl when £ - >0 Fig.1 Interaction between h(hkl) and w;(uvw)

while the surface & is formed. E-f[,— > 0 im-

. [ (3) plies that the @-bond is broken; A - @; < 0
where dpx; denotg\s the spacing between ad- implies that the d-bond is unbroken and
jacent planes of n(hkl). It is obvious that h - @; = 0 that the d-bond is unbroken or
|hldrie = 1, and therefore Eq.(3) can be broken with zero density.
rewritten as

N(&)=h-) @ when h-d; >0, (4)

In a u;-bond set, one finds that }_%; = 0 (: = 1, 2, -, n;) by crystalline symmetry.

y y y

In principle, the n; @;-bonds can divided into two parts as @; (j =1, 2, - -, n;) and U (k

=1, 2, ---, ng), resulting > @;=—3" @;. Generally, the crystalline symmetry follows that
n; = ng = n;/2. The number of dangling bonds per surface atom is thus given by

N(dg;)=h-> 4 (j=12,n/2). (5)

Fig.2 gives two cases in which different @;-bonds are broken. When a ;-bond spans
two planes, i.e. one spacing unit (Fig.2a), it is easy to show that Eq.(3) gives exactly the
number of broken #;-bonds. In general, however, when the #;-bond spans more than two
planes (Fig.2b) the number of the unit spacings of (hkl) through that the @;-bond passes
is equal to the number of the @;-bonds which are cut by one of those planes. If £2 denotes
the crystalline volume per atom, then £2/dyy, is an area of the surface h per atom. An area
density of the dangling bonds, n(%;), is thus determined by N(i;)/(2/dnks), i.e.

h (hki)
hT(hld) /' u
VA W/ 74 AW/ 7

(a) ()

Fig.2 Different @-bonds are broken when a surface A is formed: (a) 41 and 2 span respec-
tively one unit spacing of h(hkl); (b) @, spans two unit spacings of E(hkl) and i3
spans one unit spacing of Fz(hkl).
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In E_g.(5), it is easy to find that 2 |I_i| represents a area of surface I-i(hkl) per atom and
that £2|h|=a%(h? + k% 4+ 1?)/2/n in which n denotes a number of atoms per unit cell.

2.3 The SFE of the crystal

The SFE of (1x1) surface A(hkl), without reconstruction and relaxation, is as men-
tioned above half the energy per unit area required to separate the crysial along the plane
}-i(hkl). The energy, E(u), is bond energy indeed. It follows that

et = D_n(@E@)/2 =Y k-3 &/ (R E(E)/2. (7)

The term A3 a;/ |h| in Eq.{7) is a function of orientation only, while the term E(&)/2
depends on the nature of the crystal. A physical interpretation for Eq.(7) is that the SFE
of crystal is dependent on both the orientation of the surface E(hkl) and the nature of the
crystal, the bona structure and the bond energy.

3. Procedure of Calculation for SFE

In general, the Eq.(7) can be used to compute the SFE of any crystal whose structure
is known as a cubic lattice. The procedure for calculating the SFE is the following:

(1) Calculate the number of dangling bonds per surface atom using Eq.(5),

(2) Calculate area density of dangling bonds at the surface using Eq.(6),

(3) Find the #;-bond sets in the crystal, and then calculate the SFE using Eq.(7).

The creation of a new surface, l_i(hkl), is equivalent to a process in which the crystal is
cut by a plane }_i(hkl). The number of the ii;-bonds broken depends on the cut plane and
the i;-bonds. In present paper three different cases in which the plane R cuts the crystal
are taken in to account.

8.1 Case I: h cuts the (100)-bonds
It is evident that the @;=(100) represents the sc crystal with respect to the nearest
neighboring bonds. For this kind of bond, the coordination is six as shown in Fig.3a:

4, = [100], @4 = —#, W =[010], &5 = —up, u3=[001], W = —ii3

Any plane in the first quadrant separates the bond set onto two halves, i;(%, @2, U3) and
Uiy, Us, Ug), giving 3 h - i; > 0. One therefore finds that 3 @; = @) + 4y + 43 = [111].
The number of the u;-bond broken per atom according to Eq.(6) is thus given by

N(i;) =h-Y ;= (hkl)-[111] = h+ k + L. (8)
8.2 Case II: h cuts the (110)-bonds
The (110) bond set corresponds to the fcc crystal with respect to nearest neighboring

bonds as shown in Fig.3b.
Its coordination is twelve:

i = [110]/2, iy = —ty, Us = [1T0]/2, g = —1lg, Uz = [101]/2, ig = —1sz,

iy = [101]/2, €y = —ds, U5 =[011]/2, &y = —is, W6 = [011]/2, iy = —ils.
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Any plane l_i(h > k > | > 0) separates the bond set onto two halves, @;(u1, U2, U3, U, Us, Ug)
and (v, s, Uy, W10, U11, U12), giving y_ h-u; > 0. It can easily be shown that > @;=[210].
The number of the #;-bonds broken per atom according to Eq.(6) is thus given by

N(i;) = h- Y @; = (hkl) - [210] = 2h + k. (9)

It is obvious that Eq.(9) is valid only in the case of h > k > | > 0. Furthermore, it can be
easily shown that > @; = [120] when k > h > 1 > 0, while ¥, @; = [02i| when k 2l > h > 0
and )" i; = [012] when! > k > h > 0, etc. Thus, in gereral the number of @;-bonds broken
is

N(i;) = 234 n, (10)

where A and 7 are, raspectively, thie largest and middle ones of Miller indices (hkl).

(@) 7

u;

us

U3 Uy u;

Fig.3 Nearest neighbor bond sets in various lattices: (a) sc lattice: 4, = (100), n; = 6, (b)
fce lattice: 4; = (110), n, = 12, (c) bec lattice: 4, = (111), n; = 8, (d) cth lattice:
u; = (111), n; = 4.

3.8 Case III: h cuts the (111)-bonds
The (111)-bonds correspond to two crystalline lattices, bec and cth, with respect to
different coordinations as shown in Fig.3c and 3d. When its coordination is eight:

U = [111]/2, Uy = ~U;, Uy = [1T1]/2, U = —1Us,

a3 = [111)/2, U7 = —us, 6y = [111]/2, Us = —iy,
it represents the bcc lattice. Any plane E(h > k > 1 > 0) in region I as shown in
Fig.4 separates the bond set onto two halves, i; (%, iz, U3, Us) and dx(ds, U, U7, Us), giving
3 h- i; >0and ) i; = [200]. The planes in region II, however, separate the bonds other
two halves as u;(, @, U3, Us) and Uk (us, Us, U7, Us), giving Y E-ﬂj > 0and ) @; = [211].
Thus the number of the #;-bonds broken per atom is

N(d;) =2h (in region I), (11 -1)
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N(@;) =h+k+! (in region II). (11 —2)

(111)

On the other hand, the coordination of the
#;-bond set can be four:

@ = [111}/4, @ = [1T)/4,

@y = [[11)/4, @, = [TT1)/4.

(110)
which corresponds to the cth lattice with re- (100
spect to the nearest nsighbering bonds. It Fig.l 'T'lie regions in which the surfaces h > k >
can be easily found that | are divided into part I and park II when

(111)-bond set is considered.
N(d@;) = A2 (12)

Table 2 lists the summary of the numbers of the @;-bonds per surface atom broken
when the plane h cut the bonds.

Table 2 The numbers of the #;-bonds broken per surface atom when the plane
h cut the bonds

@i-bond  (100) (110) (111)

Coordination is eight Coordination is four

Region I  Region II
N(@) h+k+l 22419 2h h+k+1 A/2

4. Results and Discussion

In the present calculation for the SFE of crystal, only the first neighboring bonds are
taken into account. For instance, for the sc crystal the first and second neighboring bonds
are six (100)-bonds. Its SFE is then determined by

h+k+l E
h? + k2 + [2)172 242

Yhkl = ( (13)
where E and dy denote the bond energy and the bond length, respectively. In Eq.(13),
a=dy in the sc lattice is taken into account. One special case of Eq.(13) is exactly the same
as the formula given by Mullins(¥l. It is easy to see that the SFE consists of two parts, one
of them determines the orientation of the SFE and other does the magnitude of the SFE.
Similarly, one finds the SFEs for the fce, bee and cth crystals as shown in Table 3.

To illustrate the mode, typical cth crystals such as silicon and diamond are chosen.
The SFE of the cth crystal is given by

22+ 1 3E
h? + k2 + 12)1/2 843

Yhkl = ( (14)

where ) is the largest one of Miller indices. For Si, the bond energy (E) is 42.2kcal/mol
and the bond length is 0.234nm(%1%. Eq.(14) yields v;,; = 1160erg/cm?, which is almost
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the same as the value of 1240erg/cm? measured by Gilman using a cleavage method!”l. For
diamond, the bond energy is 83.1kcal/mol and the bond length is 0.154nm!%:19], Eq.(14)
yields ~111=5277erg/cm?, which is almost exactly the same as the value calculated by
Harkins[®! and Ramasesham!(®l. Furthermore, Eq.(14) shows that y100 : Y110 : 7111 = 1 :

1/v2:1/V3.

Table 3 The values .Q|E| and SFE of various crystals wit! respect to the 1st neighboring bonds

Crystal 2)h| Yot
Fegicn 1 Region II
2,12 4 12, 12\1/2 hyk+l E
sC a (h + &k +L) (h2+k2+12)‘/22_d?;
fec al(h? 4k 41Ty /2 22ty 3E
4 (h2+k2+12)172 2d0
bec a?(h k2 412)1/2 h 3E htk+l 3E
o ] —(h2+kz+,2_)172 2_,13' (h2+k2+12)1/'2 4,13
ctit a?(h?+k2412)1/2 A 3E
8 (h24k2+12)1/2 ﬁuf

Note: In the expressions of the SFE (ynn), @ = do, a = ﬁdo, a = (2/\/§)d0 and
a= (4/\/§)do are taken into account for sc, fcc, bec and cth lattices, respectively.

For the fec crystal, the SFE is given by

_ 22+ 3E
Thkl = T+ K2+ B2 2@

(15)

The directional factor of the SFE is (2A + 17)/(h? + k2 + 1?)'/2, implying that v100 : Y110 :
M =2:V3: 3/ V2. Based on the directional factor, the Wulff plots of the fcc crystal
can be easily found. And the equilibrium form (EF) of this crystal is then constructed
from the Wulff plots. Fig.5 shows the Wulff plots and the EF. It is found that the EF is a
truncated octahedron which is the same shape as 3D Brillouin zone of the crvstall!l].

[oo1] foot]
1 114

my

0 o1

(2)

Fig.5 Calculated Wulff plots for fcc crystal: (a) for all palnes parallel to the [110] axes, (b)
parallel to the [100] axes, (c) the EF of fcc crystal, octahedron, is obtained from the
Wulff plots.

For the bcc crystal, furthermore, the directional factors of the SFE are h/(h2+k2?+12)/2
and (h+k+1)/(h® + k* + 1?)Y/2 in regions I and II respectively, implying that v100 : 110 :
Y11 =2 V2. \/5 Its EF is a rhombic dodecahedron as shown in Fig.6. It is evident that
the EF and its 3D Brillouin zonel!!l are the same in shape.
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foot) (oat]
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Wulff plot

o101 0101

Equilibrium Equilibrium
polyhedron polyhedron

Fig.6 Calculated Wulff tlois for bec crystal: {a) for all palnes parallel to the [110] axes,
(b) paralle} <o the [100) axes, {c) the EF of fcc crystal, a rhombic dodecahedron, is
obtaraed from she Wulff plots.

5. Conclusions

(1) The SFE of an ideal surface of crystal is determined by

et = Yk Y@/ (2IR])E(@)/2,

which depends on the orientation of the surface, the crystalline structure and the bond
energy of the crystal.

fc

(2) The anisotropy of SFE of crystal is represented in terms of the Miller indexes. For
c crystal, as example, the SFE is that

_ D43
Yhkt = TR+ B2 2E

(3) The equilibrium forms of bee and fcc crystals are rhombic dodecahedron and trun-

cated octahedron, respectively. The shape of the equilibrium forms coincide that of their

Brillouin zones, respectively.
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