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Generalized bond-energy model for cohesive energy
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Abstract

A generalized bond-energy model has been developed to calculate the cohesive energy of nanoparticles by considering the different contribu-
tions of face-, edge- and corner-atoms. The model is adapted for metallic particles in a large size range from several atoms to infinity, studying
their morphology, phase stability and melting point, etc.
© 2007 Elsevier B.V. All rights reserved.
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The cohesive energy of solids is an important property,
which can be used to predict other physical properties, such as
melting point (MP), the phase stability, etc. It is well known
that the cohesive energy of the bulk is constant in specified
temperature and pressure [1,2]. For nanoparticles, however, the
cohesive energy is size dependent. Unlike the bulk solid, the
cohesive energy of nanoparticles is difficult to measure exper-
imentally. Kim et al. firstly reported the experimental cohesive
energies of Mo and W nanoparticles until 2002 [3]. They found
that the cohesive energy of the nanoparticles is fairly lower
than that of the bulk materials. Different models developed to
account for the size dependence of cohesive energy, such as
BOLS model [4], Latent heat model [5], Liquid drop model [6],
surface-area-difference (SAD) model [7] and bond energy (BE)
model [8]. The BE model was developed by our group, for
explaining the size dependent cohesive energy of Mo and W
nanoparticles. Furthermore, the BE model has also been used
to predict the melting temperature of nanomaterials [9].
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Recently, Prof. Nanda et al. [10] and Dr. Theil have pointed
out that the BE model cannot be used to nanoparticles in small
size. It is, therefore, needed to generalize the BE model in all
size range. It is just the aim of this Letter. Furthermore, a gen-
eralized bond energy (GBE) model will also be used to predict
the phase stability of nanoparticles in different size and shape.

In the BE model, atoms of a nanoparticle are classified as
interior and exterior atoms. The cohesive energy of the nanopar-
ticle is the contributions of both interior and exterior atoms.
It is emphasized that the interior atoms are the same as these
of bulk materials, and the exterior atoms have large dangling
bonds. Then the cohesive energy variation is mainly from the
exterior atoms, therefore, rigorous calculation of exterior con-
tributions to cohesive energy determines the limitation of BE
model, which is also a key issue in BE model.

The nanoparticles are generally in polyhedral shapes [11–13],
in which the exterior atoms are consisted of face-, edge- and
corner-atoms, as shown in Fig. 1. In large size particle, the
contributions of both edge- and corner-atoms are fairly small
compared with the face-atoms. Therefore, it is reasonable to
assume all exterior atoms are the face-atoms for large size par-
ticles. This is the reason why original BE model can only be
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Fig. 1. Different types of exterior atoms in bond energy model.

applied in large particles. Apparently, the original BE model
cannot be used to predict the cohesive energy of small parti-
cles. Barnard et al. have studied the free energy of polyhedral
nanoparticles by considering the contributions given by the cor-
ner and the edge atoms [14]. Stimulated by their work, we will
also consider the difference between different types of exterior
atoms to generalize BE model in this Letter.

For a nanoparticle in polyhedral shape, let N face
i and Eface

i

denote number of face-atoms and cohesive energy per face-
atom in the ith face, respectively. Similarly, Nedge

j and E
edge
j are

the number of edge-atoms and the cohesive energy per atom on
the j th edge. Ecorn

k is the cohesive energy of the corner-atom k.
Then, the total number of exterior atoms (N ) can be summed as

(1)N =
∑

i

N face
i +

∑
j

N
edge
j +

∑
k

1.

If E0 denotes the cohesive energy per interior atom, which
equals to that of the corresponding bulk materials. Then the to-
tal cohesive energy of the nanoparticle with n atoms can be
written as

En = (n − N)E0 +
∑

i

N face
i Eface

i

(2)+
∑
j

N
edge
j E

edge
j +

∑
k

ECorn
k .

If Si and ρface
i are the area and atomic density of the ith

face, respectively, a total number of atoms in the ith face is then
N face

i = Si · ρface
i . Similarly, one finds that N

edge
j = Lj · ρedge

j ,

where Lj and ρ
edge
j note the length and the atomic density of

the j th edge. Without relaxation, the cohesive energy of interior
atoms equals the value of the corresponding bulk materials as
mentioned. Since there exist large dangling bonds for surface
atoms, the corresponding cohesive energies of atoms in face,
edge and corner can be written as Esuf

i = αiE0, E
edge
j = βjE0

and Ecorn
k = λkE0, respectively. Furthermore, let αi denote

the number-of-bonds ratio between the face-atoms and interior
atoms, βj is the ratio between edge-atoms and interior atoms,
and λk is the ratio between corner-atoms and interior atoms.
Therefore, Eq. (2) can be rewritten as

E

E0
= 1

n

[
n −

∑
i

Siρ
face
i (1 − αi)

(3)+
∑
j

Ljρ
edge
j (1 − βj ) +

∑
k

(1 − λk)

]
.

Eq. (3) can be regarded as the more general formula of BE
model. Since the edge atoms and the corner atoms are con-
sidered, Eq. (3) can be used to predict the cohesive energy
of nanoparticles with different polyhedral morphologies. As a
simple case, the Au nanoparticles with different shapes, such
as cube, octahedron, cuboctahedron, truncated octahedron and
sphere (as shown in Fig. 2), will be discussed. The cube is sur-
rounded by {100} surfaces, and octahedron by {111} surfaces.
The surfaces of cuboctahedron and truncated octahedron are
surrounded by {100} and {111}. We do not specify the sur-
face of spherical particles, where their surface quantities are
regarded as the mean values of {100} and {111}.

To calculate the cohesive energy by using Eq. (3), Au
nanoparticle with mentioned shapes is considered firstly. It is
assumed that the Au nanoparticle is in ideal Face-Centered-
Cubic (FCC) without surface relaxation and reconstruction. If
the atomic radius of Au is r0, the atomic face densities (ρface

i ) of
{100} and {111} are 1/(4r2

0 ) and
√

3/(6r2
0 ), respectively. Since

the indexes of the edges in Fig. 1(a)–(d) are 〈100〉 and 〈110〉,
the corresponding atomic edge densities (ρedge

j ) are
√

2/(4r0)

and 1/(2r0), respectively. Both the face densities and the edge
densities are easily obtained from the basic cells of FCC struc-
ture.

According to simple free electron theory of solids, all pos-
itive ions immerged in the electron cloud. In the BE model,
the bonds of an atom is assumed to uniformly distribute in the
atom surface, therefore, the number of bonds is positively pro-
portional to the atomic surface area immerged in the solids. In
GBE model, the interior atoms in nanoparticles are the same
as these in the corresponding bulk solids. For face-, edge- and
corner-atoms, the number of bonds is related to the parame-
ters αi , βi and λk , respectively. In fact, the parameters αi , βi

and λk can be expressed in one equation, i.e., = Ain/(4πr2
0 ),

where Ain denotes total surface area per atom. For a face-atom,
half its surface is in the solid, thus αi = 1/2; the surface of
an edge atom is positive proportional to the dihedral angel (θ ),
thus βi = θ/(2π); similarly λk = Ain/(4πr2

0 ). The parameters
of the Au nanoparticles are listed in Table 1.

The calculated cohesive energies of the Au nanoparticles
are shown in Fig. 3, from which following information is
found. (1) The cohesive energies of the Au nanoparticles de-
pend on particle size, where the absolute values of cohesive
energy increase with increasing the particle size and approach
to bulk value; (2) The particle shape affects the cohesive en-
ergy, which means that the cohesive energies are different for
different shapes even in the identical particle size (the total
number of atoms); (3) Among the five shapes studied, the val-
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Fig. 2. Au nanoparticles with different shapes: (a) cube; (b) octahedron; (c) cuboctahedron; (d) truncated octahedron; (e) sphere.

Table 1
Input parameters of GBE model for Au nanoparticles

Cube Octahedron Cuboctahedron Truncated octahedron Sphere

αi 0.5 0.5 0.5 0.5 0.5(1 − 0.452/n1/3)e

βi 0.250 0.281 0.348 0.281a, 0.348b

λk 0.125 0.108 0.196 0.250

ρface
i

1/(4r2
0 )

√
3/(6r2

0 ) 1/(4r2
0 )c,

√
3/(6r2

0 )d 1/(4r2
0 )c,

√
3/(6r2

0 )d 1/(4r2
0 )+√

3/(6r2
0 )

2

ρ
edge
j

√
2/(4r0) 1/(2r0) 1/(2r0) 1/(2r0)

Number of faces 6 8 6c, 8d 6c, 8d

Number of edges 12 12 24 12a, 24b

Number of corners 8 6 12 24

a Edges between {111} and {111}. b Edges between {111} and {100}. c Values of {100}. d Values of {111}. e Considering the curvature of the sphere.
Fig. 3. Cohesive energy of Au nanoparticles with different shapes as the func-
tion of particle size.

ues of the relative cohesive energies follow ECubic > ESphere >

Etruncated octahedron > Ecuboctahedron > Eoctahedron when n < 840,
and ESphere > ECubic > Etruncated octahedron > Ecuboctahedron >

Eoctahedron when n > 840. In other words, if the nanoparticles
keep FCC structure without considering the structure relax-
ation, they may prefer to cubic shape when n < 840 and to
spherical shape when n > 840.

In the GBE model, the exterior atoms have been grouped as
face-, edge- and corner-atoms. For a specified shape, the face-
and the edge-atoms increase with increasing the total atomic
number (n), however, the corner atoms are fixed. For instance,
the number of corner atoms of a cubic nanoparticle is 4, which
is independent of n. To discuss the effects of corner- and edge-
atoms on the cohesive energy, three cases have been computed,
Fig. 4. Cohesive energy of cubic Au nanoparticles as the function of particle
size in three cases. E1 denotes the values considering different contributions of
face-, edge- and corner-atoms; E2 denotes the values considering of face- and
edge-atoms; and E3 denotes the values only considering face-atoms.

i.e., (1) considering different contributions of face-, edge- and
corner-atoms (E1); (2) only considering the face- and the edge-
atoms (E2); (3) only considering the face-atoms (E3). The re-
sults are plotted in Fig. 4. It is found that the values E2 are very
close to E1, which suggests that the corner-atoms have a lit-
tle effect on finial results. However, E3 is apparently different
from E1 and E2, and the difference between E3 and E1 de-
creases with increasing particle size. It should be pointed out
that the values of E3 are calculated only considering the con-
tribution of face-atoms, which is just the results of original BE
model. In Fig. 4, it is also found that the E3 increases when
n < 40, which is not true. In other words, n > 40 can be re-
garded as the size range of BE model. For GBE model, the
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Fig. 5. Critical sizes for ignoring the different contributions of corner-atoms
(or both edge- and corner-atoms) when calculation of the cohesive energy of
nanoparticles.

range is enlarged. For cubic Au nanoparticles, the size range
of GBE model is n > 6. Although the quantum effect should
also be considered when the number of atoms approaches to
one decade, the present generalization broaden the application
scope of BE model.

According to GBE model, all face-, edge- and corner-atoms
should be considered. However, in some cases, the contribu-
tions of the edge- and the corner-atoms can be ignored. For
instance, all the atoms vibrate in the equilibrium positions at
non-zero absolute temperature, thus the cohesive energies also
change a little around a constant. If the energy variation result-
ing from the lattice vibration is larger than the contributions
from the edge and the corner atoms, the latter contributions
can reasonable be ignored. To study what sizes are the critical
sizes for ignoring the edge- and the corner-atoms, we intro-
duce two parameter ε1 and ε2, where the ε1 and ε2 are defined
as ε1 = (E − E′)/E, ε2 = (E − E′′)/E, respectively. Here
E denotes the cohesive energy by considering of the different
contributions of face-, edge- and corner-atoms, E′ denotes the
cohesive energy by ignoring the corner-atoms, and E′′ ignoring
both edge- and corner-atoms.

If the error from lattice vibration (or other reasons) is ε0, we
can give two critical sizes n1 and n2 by comparing ε0 with ε1
and ε0 with ε2, where n1 is the size of ignoring the corner-atoms
and n2 is the size of ignoring both edge- and corner-atoms. In
other words, if n > n1, the corner-atoms can be ignored; if n >

n2, both edge- and the corner-atoms can be ignored. Apparently,
we have n2 > n1. As an example, we calculate the critical sizes
of Au nanoparticles with cubic shape, and the calculated results
are shown in Fig. 5. If ε0 = 0.01, then n1 = 29 and n2 = 180; if
ε0 = 0.04, then n1 = 97 and n2 = 790. These values depend on
the error ε0, which suggests that we can determine whether to
consider the edge- and the corner-atoms according to real cases
studied.

To test the efficiency of GBE model, we should compare
our calculated results with experimental values. Kim et al. re-
ported the experimental values of the cohesive energies of Mo
and W nanoparticles as mentioned [3], and the calculated values
given by BE model are consistent with these results except for
n = 30 [8]. As mentioned, the BE model is valid for n > 40, and
the GBE is valid for n > 6, which suggests that GBE model may
be used to calculate the cohesive energy of W nanoparticles
with n = 30 (W-30). Based on the calculation results discussed,
we assume that the W-30 particle is in cubic-like shape. As Kim
et al. mentioned, the W-30 particle is in amorphous structure.
For amorphous structure, if the interactions between the nearest
atoms are only considered, its coordination number is similar to
that of FCC structure. We used Eq. (3) to perform our calcula-
tion, where the parameters adopted the values in Table 1 (the
atomic radius denotes the value of W). The calculated cohesive
energy of W-30 particle by GBE model is 449 kJ/mol, which is
close to the experimental value 590 kJ/mol [3]. The difference
may be caused by the following reason: (1) the relaxation is not
considered; (2) the shape may not be the ideal cubic. All in all,
the result is acceptable for a thermodynamic model. This ex-
ample also shows that the GBE model can be applied to small
particles.

It should be mentioned that the GBE model can deal with not
only face-centered-cubic structure, but also other structures. To
calculate the cohesive energy of other structures, the model pa-
rameters should be modified according to the structure proper-
ties. Another, the GBE is a more general model for the cohesive
energy of nanoparticles, where the BE model can be regarded
as an approximation of GBE model. Furthermore, the present
GBE model is based on ideal structures, thus the structure relax-
ation is not considered. The structure relaxation can be regarded
as a spontaneous process at the constraints of thermodynamic
laws. After relaxation, the free energy of the system will de-
crease, and the structure will be more stable. Therefore, the
relaxed cohesive energy will be higher than the un-relaxed one
(given by GBE model).

In conclusion, the BE model is generalized by considering
the contributions to cohesive energy of face-, edge- and corner-
atoms. The model can be used to study the surface morphology,
the phase stability, etc., of nanoparticles. By calculation the
cohesive energies of Au nanoparticles in cubic, spherical, oc-
tahedral, cuboctahedral and truncated octahedral shapes, it is
found that the Au nanoparticle may prefer to spherical shape
when n > 840, and prefer to cubic when n < 840. Furthermore,
the calculated cohesive energy of W particles with 30 atoms by
GBE model is 449 kJ/mol, which is close to experimental value
590 kJ/mol.
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